335 research outputs found

    Software Development Support for Shared Sensing Infrastructures: A Generative and Dynamic Approach

    Get PDF
    International audienceSensors networks are the backbone of large sensing infras-tructures such as Smart Cities or Smart Buildings. Classical approaches suffer from several limitations hampering developers' work (e.g., lack of sensor sharing, lack of dynamicity in data collection policies, need to dig inside big data sets, absence of reuse between implementation platforms). This paper presents a tooled approach that tackles these issues. It couples (i) an abstract model of developers' requirements in a given infrastructure to (ii) timed automata and code generation techniques, to support the efficient deployment of reusable data collection policies on different infrastructures. The approach has been validated on several real-world scenarios and is currently experimented on an academic campus

    A multidimensional control architecture for combined fog-to-cloud systems

    Get PDF
    The fog/edge computing concept has set the foundations for the deployment of new services leveraging resources deployed at the edge paving the way for an innovative collaborative model, where end-users may collaborate with service providers by sharing idle resources at the edge of the network. Combined Fog-to-Cloud (F2C) systems have been recently proposed as a control strategy for managing fog and cloud resources in a coordinated way, aimed at optimally allocating resources within the fog-to-cloud resources stack for an optimal service execution. In this work, we discuss the unfeasibility of the deployment of a single control topology able to optimally manage a plethora of edge devices in future networks, respecting established SLAs according to distinct service requirements and end-user profiles. Instead, a multidimensional architecture, where distinct control plane instances coexist, is then introduced. By means of distinct scenarios, we describe the benefits of the proposed architecture including how users may collaborate with the deployment of novel services by selectively sharing resources according to their profile, as well as how distinct service providers may benefit from shared resources reducing deployment costs. The novel architecture proposed in this paper opens several opportunities for research, which are presented and discussed at the final section.This work was supported by the H2020 EU mF2C project, ref. 730929 and for UPC authors, also by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under contract RTI2018-094532-B-I00.Peer ReviewedPostprint (author's final draft

    SpikeletFCN: Counting Spikelets from Infield Wheat Crop Images Using Fully Convolutional Networks

    Get PDF
    Currently, crop management through automatic monitoring is growing momentum, but presents various challenges. One key challenge is to quantify yield traits from images captured automatically. Wheat is one of the three major crops in the world with a total demand expected to exceed 850 million tons by 2050. In this paper we attempt estimation of wheat spikelets from high-definition RGB infield images using a fully convolutional model. We propose also the use of transfer learning and segmentation to improve the model. We report cross validated Mean Absolute Error (MAE) and Mean Square Error (MSE) of 53.0, 71.2 respectively on 15 real field images. We produce visualisations which show the good fit of our model to the task. We also concluded that both transfer learning and segmentation lead to a very positive impact for CNN-based models, reducing error by up to 89%, when extracting key traits such as wheat spikelet counts

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Towards cloud based big data analytics for smart future cities

    Get PDF
    © 2015, Khan et al.; licensee Springer. A large amount of land-use, environment, socio-economic, energy and transport data is generated in cities. An integrated perspective of managing and analysing such big data can answer a number of science, policy, planning, governance and business questions and support decision making in enabling a smarter environment. This paper presents a theoretical and experimental perspective on the smart cities focused big data management and analysis by proposing a cloud-based analytics service. A prototype has been designed and developed to demonstrate the effectiveness of the analytics service for big data analysis. The prototype has been implemented using Hadoop and Spark and the results are compared. The service analyses the Bristol Open data by identifying correlations between selected urban environment indicators. Experiments are performed using Hadoop and Spark and results are presented in this paper. The data pertaining to quality of life mainly crime and safety & economy and employment was analysed from the data catalogue to measure the indicators spread over years to assess positive and negative trends

    Collaborative prognostics in Social Asset Networks

    Get PDF
    With the spread of Internet of Things (IoT) technologies, assets have acquired communication, processing and sensing capabilities. In response, the fi eld of Asset Management has moved from fleet-wide failure models to individualised asset prognostics. Individualised models are seldom truly distributed, and often fail to capitalise the processing power of the asset fleet. This leads to hardly scalable machine learning centralised models that often must nd a compromise between accuracy and computational power. In order to overcome this, we present a novel theoretical approach to collaborative prognostics within the Social Internet of Things. We introduce the concept of Social Asset Networks, de ned as networks of cooperating assets with sensing, communicating and computing capabilities. In the proposed approach, the information obtained from the medium by means of sensors is synthesised into a Health Indicator, which determines the state of the asset. The Health Indicator of each asset evolves according to an equation determined by a triplet of parameters. Assets are given the form of the equation but they ignore their parametric values. To obtain these values, assets use the equation in order to perform a non-linear least squares t of their Health Indicator data. Using these estimated parameters, they are interconnected to a subset of collaborating assets by means of a similarity metric. We show how by simply interchanging their estimates, networked assets are able to precisely determine their Health Indicator dynamics and reduce maintenance costs. This is done in real time, with no centralised library, and without the need for extensive historical data. We compare Social Asset Networks with the typical self-learning and fleet-wide approaches, and show that Social Asset Networks have a faster convergence and lower cost. This study serves as a conceptual proof for the potential of collaborative prognostics for solving maintenance problems, and can be used to justify the implementation of such a system in a real industrial fleet.EU H202

    A mobile-based solution for supporting end-users in the composition of services

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-016-3910-4Currently, technologies and applications evolve to create eco-systems made up of a myriad of heterogeneous and distributed services that are accessible anytime and anywhere. Even though these services can be used individually, it is their coordinated and combined usage what provide an added value to end-users. In addition, userÂżs wide adoption of mobile devices for daily activities have fostered a shift in the role played by end-users towards Internet data and services. However, existing solutions to service composition are not targeted to ordinary end-users. More easy-to-use tools have to be offered to end-users to make sure that they are successfully accepted and used by them. To this end, the work presented in this paper supports end-users in the creation of service compositions by using mobile devices. We present a Domain Specific Visual Language (DSVL) for end-users that allows them to create service compositions. A tool specifically designed for mobile devices supports this DSVL.This work has been developed with the support of MINECO under the project SMART ADAPT TIN2013-42981-P and co-financed with ERDF.Valderas Aranda, PJ.; Torres Bosch, MV.; Mansanet Benavent, I.; Pelechano Ferragud, V. (2016). A mobile-based solution for supporting end-users in the composition of services. Multimedia Tools and Applications. 1-31. https://doi.org/10.1007/s11042-016-3910-4S131Athreya B, Bahmani F, Diede A, Scaffidi C (2012) End-user programmers on the loose: a study of programming on the phone for the phone. In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Innsbruck, Austria, pp. 75–82Atoma (2015) Atoomam, a touch of magic. Accesible at: https://www.atooma.com/ . Last time accessed: December 2015Ayora C, Torres V, Weber B, Reichert M, Pelechano V (2013) Enhancing modeling and change support for process families through change patterns. In: Enterprise, business-process and information systems modeling. Springer, Berlin, pp. 246–260Boehm B, Abts C, Brown A, Chulani S, Clark B, Horowitz E, Madchy R, Reifer D, Steece B (2000) Software Cost Estimation with COCOMOII. Upper Saddle River: Prentice HallBPDM (2014) Business Process Defintion Metamodel, volume ii: Process Definitions. http://www.omg.org/spec/BPDM/1.0/volume2/PDFCasati F (1998) Models, semantics, and formal methods for the design of workflows and their exceptions. PhD thesis, MilanoCouper MP, Tourangeau R, Conrad FG, Crawford SD (2004) What they see is what we get: response options for web surveys. Soc Sci Comput Rev 22(1):111–127Cuccurullo S, Francese R, Risi M, Tortora G (2011) MicroApps development on mobile phones. In: End-user development. Springer, Berlin, pp. 289–294Dadam P, Reichert M (2009) The ADEPT project: a decade of research and development for robust and flexible process support. Comput Sci - R&D 23:81–97Danado J, PaternĂČ F (2014) Puzzle: a mobile application development environment using a jigsaw metaphor. J Vis Lang Comput 25(4):297–315Danado J, Davies M, Ricca P, Fensel A (2010) An authoring tool for user generated mobile services. In: Future internet-FIS 2010. Springer, Berlin, pp. 118–127Dey AK, Sohn T, Streng S, Kodama J (2006) iCAP: interactive prototyping of context-aware applications. In: Pervasive computing. Springer, Berlin, pp. 254–271Engeström Y, Miettinen R, PunamĂ€ki RL (1999) Perspectives on activity theory. Cambridge University Press, CambridgeGalitz WO (2002) The essential guide to user interface design: an introduction to GUI. In: Design principles and techniques. Wiley, New YorkGil M, Serral E, Valderas P, Pelechano V (2013) Designing for user attention: a method for supporting unobtrusive routine tasks. Sci Comput Program 78(10):1987–2008Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660Haines W, Gervasio M, Spaulding A, Peintner B (2010) Recommendations for end-user development. In ACM Workshop on User-Centric Evaluation of Recommender Systems and their Interfaces, Barcelona, Spain, pp. 42-49HĂ€kkilĂ€ J, KorpipÀÀ P, Ronkainen S, Tuomela U (2005) Interaction and end-user programming with a context-aware mobile application. In: Human-computer interaction-INTERACT 2005. Springer, Berlin, pp. 927–937ICIS (2015) Internet Computing in the Internet of Services. Summer School. Department of Informatics Engineering of the University of Coimbra. Available at: http://icis.uc.pt/ . Last time accessed: December 2015Ifttt (2015) Ifttt, If This Then That. Accesible at: https://ifttt.com/ . Last time accessed: December 2015Larman C, Basili VR (2003) Iterative and incremental development: a brief history. Computer 6:47–56Lewis JR (1995) IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J Hum Comput Interact 7(1):57–78Liberman H, PaternĂČ F, Klann M, Wulf V (2006) End user development. In: Liberman H, PaternĂČ F, Wulf V (eds) End-user development: an emerging paradigm, vol 9, pp. 427–457Locale (2015) Accesible at: http://www.twofortyfouram.com . Last time accessed: December 2015Lucci G, PaternĂČ F (2014) Understanding end-user development of context-dependent applications in smartphones. In: Human-centered software engineering. Springer, Berlin, pp. 182–198Mansanet I, Torres V, Valderas P, Pelechano V (2014) A Mobile End-Use Tool for service Compositions. X Jornadas de Ciencia e IngenierĂ­a de Servicios (JCIS 2014), 25–35Mansanet I, Torres V, Valderas P, Pelechano V (2015) IoT Compositions by and for the Crowd. XI Jornadas de Ciencia e IngenierĂ­a de Servicios (JCIS 2015)Neil T (2014) Mobile design pattern gallery: UI patterns for smartphone apps. “O’Reilly Media, Inc.”, SebastopolNielsen J (2005) Ten usability heuristics. https://www.nngroup.com/articles/ten-usability-heuristics . Last time accessed: February 2016Renger M, Kolfschoten GL, de Vreede GJ (2008) Challenges in collaborative modeling: A literature review. In Advances in enterprise engineering I, held at CAiSE 2008, Montpellier, 10. 61–77Repenning A, Ioannidou A (2006) What makes end-user development tick? 13 design guidelines. End user development, Human-Computer Interaction Series, vol 9, pp. 51–85Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering. Empir Softw Eng 14(2):131–164Segal J (2005) Two principles of end-user software engineering research, In ACM SIGSOFT software engineering notes (Vol. 30, No. 4, pp. 1–5). ACM, New YorkSerral E, Valderas P, Pelechano V (2013) Context-adaptive coordination of pervasive services by interpreting models during runtime†. Comput J 56(1):87–114Tasker (2015) Tasker, Total Automation for Android. Accesible at: http://tasker.dinglisch.net/ . Last time accessed: December 2015.Uden L, Valderas P, Pastor O (2008) An activity-theory-based model to analyse Web application requirements. Inf Res 13(2):1Valderas P, Pelechano V, Pastor O (2006) A transformational approach to produce web application prototypes from a web requirements model. Int J Web Eng Technol 3(1):4–42Van Deursen A, Klint P, Visser J (2000) Domain-specific languages: an annotated bibliography. Sigplan Notices 35(6):26–36Van Welie M, TrĂŠtteberg H (2000) Interaction patterns in user interfaces. In 7th. Pattern Languages of Programs Conference (pp. 13–16)Weber B, Reichert M, Rinderle S (2008) Change patterns and change support features - enhancing flexibility in process-aware information systems. Data Knowl Eng 66:438–466Yu J, Sheng QZ, Han J, Wu Y, Liu C (2012) A semantically enhanced service repository for user-centric service discovery and management. Data Knowl Eng 72:202–21

    Education can improve the negative perception of a threatened long-lived scavenging bird, the Andean condor

    Get PDF
    Human-wildlife conflicts currently represent one of the main conservation problems for wildlife species around the world. Vultures have serious conservation concerns, many of which are related to people's adverse perception about them due to the belief that they prey on livestock. Our aim was to assess local perception and the factors influencing people's perception of the largest scavenging bird in South America, the Andean condor. For this, we interviewed 112 people from Valle FĂ©rtil, San Juan province, a rural area of central west Argentina. Overall, people in the area mostly have an elementary education, and their most important activity is livestock rearing. The results showed that, in general, most people perceive the Andean condor as an injurious species and, in fact, some people recognize that they still kill condors. We identified two major factors that affect this perception, the education level of villagers and their relationship with livestock ranching. Our study suggests that conservation of condors and other similar scavengers depends on education programs designed to change the negative perception people have about them. Such programs should be particularly focused on ranchers since they are the ones who have the worst perception of these scavengers. We suggest that highlighting the central ecological role of scavengers and recovering their cultural value would be fundamental to reverse their persecution and their negative perception by people.Fil: Cailly Arnulphi, VerĂłnica BeatrĂ­z. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Borghi, Carlos Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentin
    • 

    corecore